

# Testicular Seminoma and Hippo Signaling Pathway

Tuğçe Önel<sup>1</sup> , Aylin Yaba<sup>2</sup> 

<sup>1</sup> Department of Histology and Embryology, Demiroglu Bilim University Faculty of Medicine, İstanbul, Türkiye; <sup>2</sup> Department of Histology and Embryology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye

## Abstract

The Hippo signaling pathway is a highly conserved regulator of tissue development and regeneration that controls organ size, primarily through the control of cell proliferation and apoptosis. Dysregulation of this pathway contributes to tumorigenesis in multiple human cancers; however, its role in testicular cancer—particularly seminoma—remains insufficiently characterized. Testicular germ cell tumors (TGCTs) are the most common malignancies in young adult men, with seminoma representing the predominant histological subtype. In this review, we summarize the molecular architecture of the Hippo signaling pathway and critically evaluate current evidence linking Hippo pathway components to testicular biology and seminoma pathogenesis, in accordance with the 2022 World Health Organization (WHO) classification of testicular tumors. Particular emphasis is placed on mixed germ cell tumors, the relative proportion of seminoma among TGCTs, and emerging therapeutic strategies targeting Yes-associated protein / Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) signaling. We further integrate recent translational findings demonstrating the anti-cancer effects of verteporfin in human seminoma TCam-2 cells, highlighting the Hippo pathway as a promising and context-dependent therapeutic target in testicular seminoma.

**Keywords:** Testicular seminoma, Testicular germ cell tumors, Hippo signaling, pathway, YAP/TAZ, verteporfin.

## TESTIS

The testis is the male gonad responsible for spermatogenesis and steroidogenesis (1,2). It consists of seminiferous tubules, where germ cell development occurs, and interstitial tissue containing Leydig cells that produce testosterone (3,4). Sertoli cells within the seminiferous tubules support germ cell differentiation and, through their tight interconnections, form the blood-testis barrier, which is essential for immune privilege and spermatogenic integrity (5-8). Leydig cells are the source of androgens or testosterone in males (9).

Received November 18, 2025

Accepted December 16, 2025

Published December 25, 2025

DOI 10.36519/yjhs.2025.924

**Suggested Citation** Önel T, Yaba A. Testicular seminoma and Hippo signaling pathway. Yeditepe JHS. 2025;3:111-9.

**Correspondence** Aylin Yaba

E-mail aylinyaba@hotmail.com



This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

## Spermatogenesis and Spermiogenesis

Spermatogenesis is a highly regulated, multi-stage process involving mitotic proliferation, meiotic division, and post-meiotic differentiation (spermiogenesis), ultimately producing mature spermatozoa (4,10). Sertoli-germ cell interactions and tightly regulated signaling networks ensure proper progression of this process (11,12). The time required for the spermatogonia to develop into mature sperm is approximately 64 days (13). Spermiogenesis is the final phase of spermatogenesis which differentiation of haploid germ cells to motile, fertilization-competent spermatozoa occur.

## TESTICULAR CANCER

Testicular cancer is the most common type of malignancy in men aged between 15 and 35 years (14,15) accounting for approximately 1% of all male cancers (16,17). The majority (>95%) are testicular germ cell tumors (TGCTs), whose pathogenesis involves a complex interplay between genetic susceptibility, disrupted germ cell differentiation, and environmental influences (16,17).

### Testicular Cancer Development

Despite extensive research, the etiology of testicular germ cell tumors (TGCTs) remains incompletely understood. Both environmental and genetic factors have been implicated in TGCT development, with increased risk observed in individuals with cryptorchidism, familial TGCT history, Klinefelter syndrome, testicular dysgenesis, testicular atrophy, inguinal hernia, and hydrocele (18-21). Genome-wide association studies have further identified multiple single nucleotide polymorphisms associated with TGCT susceptibility, supporting a strong genetic contribution to disease risk (22,23). Although environmental influences such as androgen disruption and perinatal or lifestyle factors have been proposed, their direct relationship with TGCT remains unclear, suggesting that tumorigenesis likely arises from the combined effects of microenvironmental and epigenetic alterations (24-26).

Developmentally, TGCTs are thought to originate from germ cell neoplasia *in situ* (GCNIS), arising when primordial germ cells or gonocytes fail to differentiate into pre-spermatogonia during fetal or early postnatal development. This differentiation arrest may result from genetic abnormalities or exposure to endocrine-disrupting environmental factors, including anti-androgens and xenoestrogens (27-29). While it remains debated whether GCNIS originates from arrested spermatogonial cells or from reprogrammed adult germ cells, the high differentiation potential of adult spermatogonia lends support to the latter hypothesis (30).

## Testicular Cancer Types

According to the 2022 World Health Organization (WHO) classification of tumors of the urinary system and male genital organs, testicular tumors are broadly categorized into germ cell tumors (GCTs), sex cord-stromal tumors, and a heterogeneous group of other rare tumors (31). Germ cell tumors account for more than 95% of all testicular malignancies and represent the most clinically significant category (16,32,33).

Testicular GCTs are further divided into two major biological groups based on their association with GCNIS:

- GCNIS-related tumors, which represent the vast majority of postpubertal TGCTs and include seminomas and non-seminomatous germ cell tumors (NSGCTs), and
- Non-GCNIS-related tumors, which typically occur in prepubertal children or older adults and follow distinct pathogenetic mechanisms (34,35).

Seminoma is the most common histological subtype of TGCT, accounting for approximately 50–55% of cases (36). Seminomas are composed of relatively uniform cells resembling primordial germ cells or gonocytes and typically present in young to middle-aged adults. Histologically, seminomas are characterized by large polygonal cells with clear cytoplasm, centrally located nuclei, and prominent nucleoli, arranged in sheets or lobules separated by fibrous septa containing lymphocytic infiltrates (37). Serum tumor markers are usually normal, although mild elevation of  $\beta$ -human chorionic gonadotropin ( $\beta$ -hCG) may be observed due to the presence of syncytiotrophoblastic giant cells (36,37).

Non-seminomatous germ cell tumors comprise a heterogeneous group that includes embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma. These tumors may occur as pure forms but more commonly present as components of mixed germ cell tumors (38). Embryonal carcinoma is an aggressive malignant tumor composed of poorly differentiated epithelial cells with high mitotic activity (39). Yolk sac tumor is the most frequent TGCT in infancy and early childhood and is characterized by Schiller-Duval bodies and elevated alpha-fetoprotein (AFP) levels (40,41). Choriocarcinoma is a rare but highly aggressive tumor with early hematogenous dissemination and markedly elevated  $\beta$ -hCG levels (42-44). Teratomas consist of differentiated tissues derived from two or three embryonic germ layers and may be benign or malignant depending on patient age and associated tumor components (45).

Importantly, mixed germ cell tumors represent approximately 30–40% of all TGCTs and contain variable proportions of seminomatous and non-seminomatous elements

(33,38). The identification of mixed histology is clinically critical, as even a minor non-seminomatous component dictates treatment strategies and prognosis. Therefore, comprehensive histopathological sampling and accurate classification according to WHO criteria are essential for optimal patient management (42-44,46).

Sex cord-stromal tumors, including Leydig cell and Sertoli cell tumors, account for less than 5% of testicular neoplasms. These tumors are usually benign and hormonally active in some cases, leading to endocrine manifestations such as gynecomastia or precocious puberty (47). Malignant transformation is rare but has been reported, particularly in Leydig cell tumors (31,47).

Overall, the 2022 WHO classification emphasizes the biological heterogeneity of testicular tumors and highlights the importance of GCNIS status, mixed tumor composition, and precise histopathological diagnosis. This updated framework provides a critical foundation for understanding tumor behavior, guiding clinical decision-making, and interpreting molecular pathways—such as Hippo signaling—that may differentially contribute to seminoma and non-seminomatous TGCT pathogenesis (32,34).

## HIPPO SIGNALING PATHWAY

The Hippo signaling pathway was originally identified in *Drosophila melanogaster* as a tumor-suppressive pathway and is highly conserved in mammals, including humans and mice (48). It functions as a central regulator of organ size and tissue homeostasis by integrating diverse upstream signals such as cell polarity, cell-cell contact, metabolic status, mechanical cues, and G-protein-coupled receptor signaling (48). Through these inputs, Hippo signaling limits cell proliferation, migration, and differentiation during development, while its dysregulation promotes abnormal tissue growth and tumorigenesis (48).

In mammals, Hippo signaling is mediated by a core kinase cascade in which mammalian STE20-like protein kinases 1/2 (MST1 and MST2 kinases), activated by autophosphorylation and upstream TAO kinases (TAOK1/2/3), phosphorylate and activate large tumor suppressor kinases 1/2 (LATS1/2) (48-52). The tumor suppressor neurofibromin 2 (NF2) (also known as Merlin) facilitates this process by recruiting LATS1/2 to the plasma membrane, enabling efficient mammalian STE20-like

**Table 1.** Hippo signaling pathway proteins and roles in cancer.

| Protein         | Class/Function              | Role in active hippo pathway                                                | Role in cancer                                                       | Reference |
|-----------------|-----------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|
| MST1/2 (STK4/3) | Serine/Threonine kinases    | Phosphorylate and activate LATS1/2 and MOB1                                 | Tumor suppressor (Inactivation promotes tumorigenesis)               | (48)      |
| SAV1            | Adaptor protein/Scaffold    | Binds MST1/2 and LATS1/2 to facilitate LATS phosphorylation                 | Tumor suppressor                                                     | (49,50)   |
| LATS1/2         | Serine/Threonine kinases    | Phosphorylate and inactivate YAP and TAZ                                    | Tumor suppressor                                                     | (51)      |
| MOB1A/B         | Adaptor protein/Cofactor    | Associates with LATS1/2 to potentiate their kinase activity                 | Tumor suppressor                                                     | (52)      |
| YAP             | Transcriptional coactivator | Phosphorylated by LATS1/2, leading to cytoplasmic retention and degradation | Oncogene (Nuclear localization promotes cell proliferation/survival) | (53-55)   |
| TAZ (WWTR1)     | Transcriptional coactivator | Phosphorylated by LATS1/2, leading to cytoplasmic retention and degradation | Oncogene (Nuclear localization promotes cell proliferation/survival) | (56)      |
| TEAD1-4         | Transcription factors       | Partner with YAP/TAZ in the nucleus to drive gene expression                | Key oncogenic mediators of YAP/TAZ activity                          | (57)      |

**MST1/2:** Mammalian STE20-like protein kinase 1/2, **STK4/3:** Serine/threonine kinase 4/3, **SAV1:** Salvador homolog 1, **LATS1/2:** Large tumor suppressor kinase 1/2, **MOB1A/B:** Mps one binder kinase activator-like 1A/1B, **YAP:** Yes-associated protein, **TAZ:** Transcriptional coactivator with PDZ-binding motif (WWTR1), **TEAD:** TEA domain transcription factor.

protein kinase 1/2 (MST1/2)-mediated phosphorylation (26). Activated LATS1/2 subsequently phosphorylate the transcriptional coactivators yes-associated protein (YAP) and (transcriptional coactivator with PDZ-binding motif) (TAZ), leading to their cytoplasmic retention or degradation and suppression of TEA domain transcription factor (TEAD)-dependent gene transcription (53,55-57). When Hippo signaling is inactive, unphosphorylated YAP and TAZ translocate to the nucleus, where they interact with TEAD transcription factors to induce genes involved in cell proliferation, migration, and survival (52-56) (Table 1).

The Hippo signaling pathway is organized by cell or tissue properties such as apicobasal polarity, mechano-transduction, cell-cell contact, and contact inhibition. Also, the Hippo signaling pathway and its components regulate very important processes such as cell viability, cell proliferation, cell competition, preservation of stem cell characteristics, regeneration, and metastasis (48). This pathway is conserved in mammals and has an important role in limiting tumor growth in cancer development. Regulation of the Hippo signaling pathway, therefore, presents a potential therapeutic case for treating cancer, but the targeted pathway needs to be explored in more detail (57-59).

### Hippo Signaling Pathway in Male Reproductive System

Limited studies have examined Hippo signaling in the male reproductive system. In mice, genetic deletion of key Hippo components such as YAP, LATS1/2, or TAZ results in embryonic lethality, impaired postnatal development, or reduced fertility, highlighting their essential roles in testicular development and endocrine regulation (60-62). YAP and TAZ regulate genes involved in sex differentiation and early spermatogenesis, and Hippo pathway proteins have been identified in Sertoli cells across multiple species, where YAP controls cyclic AMP signaling, proliferation, and apoptosis (60,63). Although indirect evidence suggests a role for Hippo signaling in germ cell regulation, including miRNA-mediated inhibition of LATS2 and high YAP expression in spermatogonia (61). Its function in human testicular tissue remains unexplored, with no studies to date evaluating Hippo pathway protein expression in the normal human testis, aside from prostate cancer-related reports (64).

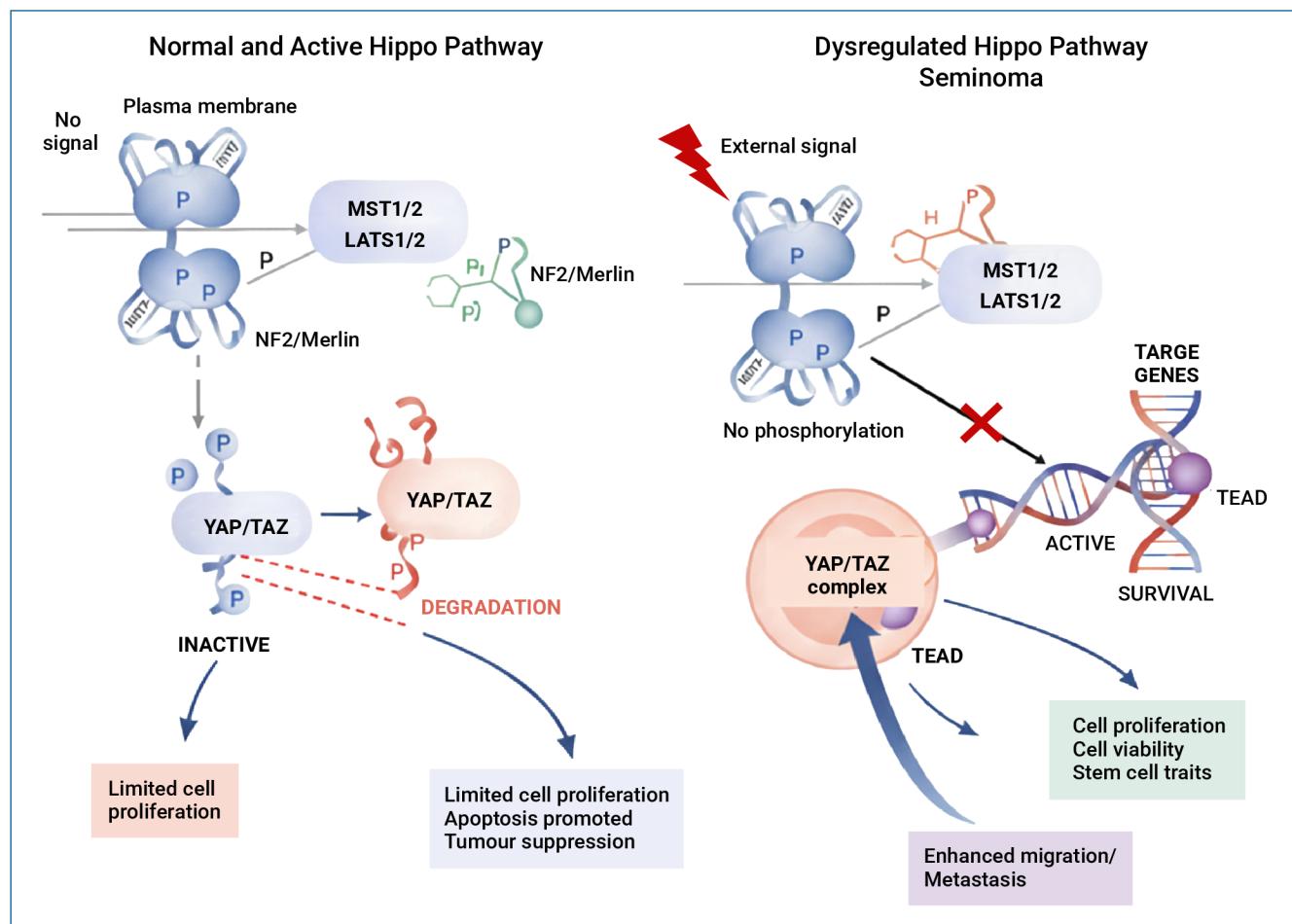
### Hippo Signaling Pathway in Human Cancer

The Hippo signaling pathway functions as a central regulator of cellular homeostasis by integrating biochemical and mechanical cues to control proliferation, apoptosis, stemness, and tissue architecture. Canonically, activa-

**Table 2.** Hippo pathways inhibitors and key findings/status in cancer treatment.

| Inhibitor/<br>Drug Class | Target(s)                                                    | Lead cancer<br>indication(s) in trials                                                              | Key findings/Status                                                                                                                                                                                                                   | Clinical trial ID<br>(NCT)                                                | Reference |
|--------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|
| VT3989                   | YAP/TAZ-TEAD Interaction (Non-covalent TEAD Ligand)          | Malignant mesothelioma (MPM), Non-small cell lung cancer (NSCLC), other advanced solid tumors       | First-in-human Phase 1 trials showed early efficacy signals and durable responses in NF2-mutated and wild-type mesothelioma.                                                                                                          | NCT04665206<br>(Clinical trial ID)                                        | (77)      |
| IAG933                   | YAP/TAZ-TEAD Interaction (Orally Bioavailable Inhibitor)     | Various solid tumors with Hippo/YAP pathway activation.                                             | Preclinical data shows potent, specific inhibition of the YAP/TAZ-TEAD axis and strong antitumor effects, positioning it for upcoming clinical studies.                                                                               | NCT05590918<br>(Example trial ID for a related next-gen TEAD inhibitor)   | (78)      |
| VP                       | YAP/TAZ-TEAD Interaction (Disrupts complex, YAP degradation) | Glioblastoma, Pancreatic cancer, Ocular/Uveal melanoma (Mostly used in photodynamic therapy or PDT) | Preclinical studies show light-independent inhibition of YAP/TAZ function in many tumor types. Clinical trials mainly use it as a photosensitizer in PDT, but some Glioblastoma trials test its single-agent YAP-inhibitory activity. | NCT04590664<br>(Verteporfin for recurrent glioblastoma-light-independent) | (79)      |
| MRK-A                    | YAP/TAZ-TEAD Interaction (Preclinical Compound)              | Preclinical/Development (Focus on mesothelioma, glioblastoma, sarcoma)                              | Inhibits the YAP/TAZ-TEAD complex and suppresses tumor growth in NF2-deficient mesothelioma xenografts <i>in vivo</i> .                                                                                                               |                                                                           | (80-82)   |

**YAP:** Yes-associated protein, **TAZ:** Transcriptional coactivator with PDZ-binding motif, **TEAD:** TEA domain transcription factor, **NF2:** Neurofibromin 2, **NSCLC:** Non-small cell lung cancer, **MPM:** Malignant pleural mesothelioma, **VP:** Verteporfin, **PDT:** Photodynamic therapy.


tion of the MST1/2-LATS1/2 kinase cascade restricts nuclear YAP/TAZ activity, thereby limiting TEAD-dependent transcription of genes that promote cell cycle progression and survival. Disruption of this regulatory axis through genetic mutations or functional suppression of upstream Hippo components leads to constitutive YAP/TAZ activation and uncontrolled cell proliferation, a phenomenon consistently observed in both *Drosophila* and mammalian tumor models (58,65-67).

Beyond proliferation, YAP and TAZ exert profound effects on tumor cell plasticity by promoting stem cell-like transcriptional programs. Elevated YAP/TAZ activity has been documented in embryonic, mesenchymal, and cancer stem cells, where it sustains self-renewal capacity and inhibits differentiation. Mechanistically, YAP/TAZ regulate pluripotency-associated gene networks and cooperate with TEAD transcription factors to maintain progenitor states, thereby increasing tumorigenic potential and resistance to therapy (65-68). These stemness-promoting effects are further reinforced by YAP/TAZ-mediated loss of contact inhibition and disruption of epithelial tissue architecture, both hallmark features of malignant transformation (69,70).

Hippo signaling is also a key mechanotransduction pathway that senses changes in extracellular matrix stiffness, cell-cell adhesion, and cytoskeletal tension. Mechanical inactivation of the Hippo kinase cascade results in nuclear accumulation of YAP/TAZ, which in turn drives transcriptional programs favoring invasion, migration, and metastatic progression. Increased YAP/TAZ activity has been correlated with aggressive and metastatic phenotypes in breast and prostate cancers, supporting a role for Hippo pathway dysregulation in tumor dissemination (70).

In regenerative contexts, transient suppression of Hippo signaling enables tissue repair by activating YAP/TAZ-dependent progenitor expansion. However, chronic or unrestrained activation of this regenerative program can promote oncogenesis, particularly in tissues with high regenerative capacity. Experimental models demonstrate that sustained YAP/TAZ activation during repeated injury or regeneration drives tumor formation, linking Hippo pathway dysregulation to regeneration-associated carcinogenesis (71-76).

Despite extensive evidence implicating Hippo signaling in diverse human cancers, its role in testicular tumors has



**FIGURE 1.** Normal and active Hippo signaling pathway with dysregulated Hippo pathway.

remained largely unexplored. In this context, our findings demonstrate that Hippo pathway components exhibit tissue-specific localization patterns in the human testis and that pharmacological inhibition of YAP-TEAD interaction by verteporfin suppresses proliferation and migration while inducing apoptosis in seminoma-derived TCam-2 cells. Notably, these effects occur primarily through post-transcriptional modulation and cytoplasmic sequestration of YAP/TAZ, highlighting a mechanistic vulnerability of seminoma cells to Hippo pathway targeting. Collectively, these data identify Hippo signaling as a context-dependent regulator of seminoma biology and support verteporfin as a promising therapeutic strategy for precision targeting of testicular cancer (77-82) (Table 2).

## CONCLUSION

This review highlights the Hippo signaling pathway as a critical yet understudied regulator of testicular semi-

noma biology. Aberrant activation of YAP/TAZ has been implicated in tumor cell survival, proliferation, and therapy resistance across multiple cancer types, and emerging evidence suggests that similar mechanisms operate in seminoma. Importantly, experimental data using the seminoma-derived TCam-2 cell line demonstrate that pharmacological targeting of Hippo signaling with verteporfin exerts significant anti-cancer effects by suppressing YAP/TAZ activity and inducing apoptosis (77-82).

Collectively, these findings support the Hippo signaling pathway as a promising molecular target in testicular seminoma and provide a strong rationale for future translational and clinical studies aimed at precision therapy in TGCTs (Figure 1). Integration of WHO 2022 tumor classification with molecular pathway analysis will be essential for identifying patients most likely to benefit from Hippo pathway-directed therapeutic strategies.

**Ethical Approval:** N.A

**Informed Consent:** N.A.

**Peer-review:** Externally peer-reviewed

**Author Contributions:** Concept – T.Ö., A.Y.; Design – T.Ö., A.Y.; Supervision – A.Y.; Fundings – A.Y.; Data Collection and/or Processing – T.Ö., A.Y.;

Analysis and/or Interpretation – T.Ö., A.Y.; Literature Review – T.Ö., A.Y.; Writer – T.Ö., A.Y.; Critical Reviews – A.Y.

**Conflict of Interest:** The author declares no conflict of interest.

**Financial Disclosure:** Our current research on this topic is supported by Yeditepe University Research Projects and Scientific Activities (YAP), Yeditepe University, Project No. HD-22002.

## REFERENCES

- Middendorff R, Müller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. *J Clin Endocrinol Metab*. 2002;147(7):3486-99. [\[CrossRef\]](#)
- Bertolotto M, Valentino M, Derchi LE. Imaging techniques and normal anatomy: scrotum. In: Hamm B, Ros PR, editors. *Abdominal imaging*. Berlin (Germany): Springer Berlin Heidelberg; 2013. p. 1851-60.
- Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. *Andrology*. 2020;8(4):903-14. [\[CrossRef\]](#)
- Kaur G, Thompson LA, Dufour JM. Sertoli cells-immunological sentinels of spermatogenesis. *Semin Cell Dev Biol*. 2014;30:36-44. [\[CrossRef\]](#)
- de Kretser DM, editor. *Molecular biology of the male reproductive system*. San Diego (CA): Academic Press; 1993.
- França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. *Andrology*. 2016;4(2):189-212. [\[CrossRef\]](#)
- Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. *Cell Death Dis*. 2019;10(8):541. [\[CrossRef\]](#)
- Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. *Pharmacol Rev*. 2012;64(1):16-64. [\[CrossRef\]](#)
- Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. *Biol Reprod*. 2018;99(1):101-11. [\[CrossRef\]](#)
- Thakur RK, Yadav VK, Kumar A, Singh A, Pal K, Hoeppner L, et al. Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin. *Nucleic Acids Res*. 2014;42(18):11589-600. [\[CrossRef\]](#)
- Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. *Annu Rev Cell Dev Biol*. 2008;24:263-86. [\[CrossRef\]](#)
- O'Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. *Spermatogenesis*. 2015;4(2):e979623. [\[CrossRef\]](#)

**13** Peschon JJ, Behringer RR, Brinster RL, Palmiter RD. Spermatid-specific expression of protamine 1 in transgenic mice. *Proc Natl Acad Sci U S A.* 1987;84(15):5316-9. [\[CrossRef\]](#)

**14** Gilligan T. Testis cancer: rare, but curable with prompt referral. *Cleve Clin J Med.* 2007;74(11):817-25. [\[CrossRef\]](#)

**15** Khan O, Protheroe A. Testis cancer. *Postgrad Med J.* 2007;83(984):624-32. [\[CrossRef\]](#)

**16** Huyghe E, Plante P, Thonneau PF. Testicular cancer variations in time and space in Europe. *Eur Urol.* 2007;51(3):621-8. [\[CrossRef\]](#)

**17** Regalado Porras GO, Chávez Nogueda J, Poitevin Chacón A. Chemotherapy and molecular therapy in cervical cancer. *Rep Pract Oncol Radiother.* 2018;23(6):533-9. [\[CrossRef\]](#)

**18** Faja F, Finocchi F, Carlini T, Rizzo F, Pallotti F, Spaziani M, et al. PDE11A gene polymorphism in testicular cancer: sperm parameters and hormonal profile. *J Endocrinol Invest.* 2021;44(10):2273-84. [\[CrossRef\]](#)

**19** Litchfield K, Levy M, Dudakia D, Proszek P, Shipley C, Basten S, et al. Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. *Nat Commun.* 2016;7:13840. [\[CrossRef\]](#)

**20** di Pietro A, Vries EG, Gietema JA, Spierings DC, de Jong S. Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours. *Int J Biochem Cell Biol.* 2005;37(12):2437-56. [\[CrossRef\]](#)

**21** Lutke Holzik MF, Rapley EA, Hoekstra HJ, Sleijfer DT, Nolte IM, Sijmons RH. Genetic predisposition to testicular germ-cell tumours. *Lancet Oncol.* 2004;5(6):363-71. [\[CrossRef\]](#)

**22** Chung CC, Kanetsky PA, Wang Z, Hildebrandt MA, Koster R, Skotheim RI, et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. *Nat Genet.* 2013;45(6):680-5. [\[CrossRef\]](#)

**23** Lebron C, Pal P, Brait M, Dasgupta S, Guerrero-Preston R, Looijenga LH, et al. Genome-wide analysis of genetic alterations in testicular primary seminoma using high resolution single nucleotide polymorphism arrays. *Genomics.* 2011;97(6):341-9. [\[CrossRef\]](#)

**24** Béranger R, Le Cornet C, Schüz J, Fervers B. Occupational and environmental exposures associated with testicular germ cell tumours: systematic review of prenatal and life-long exposures. *PLoS One.* 2013;8(10):e77130. [\[CrossRef\]](#)

**25** Cook MB, Akre O, Forman D, Madigan MP, Richiardi L, McGlynn KA. A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer--experiences of the son. *Int J Epidemiol.* 2010;39(6):1605-18. [\[CrossRef\]](#)

**26** Looijenga LH, Van Agthoven T, Biermann K. Development of malignant germ cells - the environmental hypothesis. *Int J Dev Biol.* 2013;57(2-4):241-53. [\[CrossRef\]](#)

**27** Ponti G, Ponzoni M, Ferreri AJ, Foppoli M, Mazzucchelli L, Zucca E. The impact of histopathologic diagnosis on the proper management of testis neoplasms. *Nat Clin Pract Oncol.* 2008;5(10):619-22. [\[CrossRef\]](#)

**28** Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. *Hum Reprod.* 2001;16(5):972-8. [\[CrossRef\]](#)

**29** Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma *in situ*: genetic and environmental aspects. *Hum Reprod Update.* 2006;12(3):303-23. [\[CrossRef\]](#)

**30** Zhang XS, Zhang ZH, Jin X, Wei P, Hu XQ, Chen M, et al. Dedifferentiation of adult monkey Sertoli cells through activation of extracellularly regulated kinase 1/2 induced by heat treatment. *Endocrinology.* 2006;147(3):1237-45. [\[CrossRef\]](#)

**31** Accardo G, Vallone G, Esposito D, Barbato F, Renzullo A, Conzo G, et al. Testicular parenchymal abnormalities in Klinefelter syndrome: a question of cancer? Examination of 40 consecutive patients. *Asian J Androl.* 2015;17(1):154-8. [\[CrossRef\]](#)

**32** Sesterhenn IA, Davis CJ Jr. Pathology of germ cell tumors of the testis. *Cancer Control.* 2004;11(6):374-87. [\[CrossRef\]](#)

**33** McIver SC, Roman SD, Nixon B, Loveland KL, McLaughlin EA. The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. *F1000Res.* 2013;2:55. [\[CrossRef\]](#)

**34** Looijenga LH, Gillis AJ, Stoop H, Biermann K, Oosterhuis JW. Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance. *Int J Androl.* 2011;34(4 Pt 2):e234-51. [\[CrossRef\]](#)

**35** Bahrami A, Ro JY, Ayala AG. An overview of testicular germ cell tumors. *Arch Pathol Lab Med.* 2007;131(8):1267-80. [\[CrossRef\]](#)

**36** Reuter VE. Origins and molecular biology of testicular germ cell tumors. *Mod Pathol.* 2005;18 Suppl 2:S51-60. [\[CrossRef\]](#)

**37** Marko J, Wolfman DJ, Aubin AL, Sesterhenn IA. Testicular seminoma and its mimics: from the radiologic pathology archives. *Radiographics.* 2017;37(4):1085-98. [\[CrossRef\]](#)

**38** Ronchi A, Pagliuca F, Franco R. Testicular germ cell tumors: the changing role of the pathologist. *Ann Transl Med.* 2019;7(Suppl 6):S204. [\[CrossRef\]](#)

**39** Pang S, Zhang L, Shi Y, Liu Y. Unclassified mixed germ cell-sex cord-stromal tumor with multiple malignant cellular elements in a young woman: a case report and review of the literature. *Int J Clin Exp Pathol.* 2014;7(8):5259-66.

**40** Jamshidi P, Taxy JB. Educational case: yolk sac (endodermal sinus) tumor of the ovary. *Acad Pathol.* 2020;7:2374289520909497. [\[CrossRef\]](#)

**41** Burns MJ, Zheng L, Dalla-Pozza L, Graf NS, Walton J, Tumuluri K. Yolk sac tumours of the orbit and sinonasal tract. *Orbit.* 2022;41(6):680-6. [\[CrossRef\]](#)

**42** Jiang F, Xiang Y, Feng FZ, Ren T, Cui ZM, Wan XR. Clinical analysis of 13 males with primary choriocarcinoma and review of the literature. *Onco Targets Ther.* 2014;7:1135-41. [\[CrossRef\]](#)

**43** Kregel S, Beyer J, Souchon R, Albers P, Albrecht W, Algaba F, et al. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. *Eur Urol.* 2008;53(3):478-96. [\[CrossRef\]](#)

**44** Kregel S, Beyer J, Souchon R, Albers P, Albrecht W, Algaba F, et al. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II. *Eur Urol.* 2008;53(3):497-513. [\[CrossRef\]](#)

**45** Gică N, Peltecu G, Chirculescu R, Gică C, Stoicea MC, Serbanica AN, et al. Ovarian germ cell tumors: pictorial essay. *Diagnostics (Basel).* 2022;12(9):2050. [\[CrossRef\]](#)

**46** Chung P, Warde P. Testicular cancer: germ cell tumours. *BMJ Clin Evid.* 2016;2016:1807. [\[CrossRef\]](#)

**47** Schultz KA, Harris AK, Schneider DT, Young RH, Brown J, Gereshenson DM, et al. Ovarian Sex Cord-Stromal Tumors. *J Oncol Pract.* 2016;12(10):940-6. [\[CrossRef\]](#)

**48** Ready D, Yagiz K, Amin P, Yildiz Y, Funari V, Bozdag S, et al. Mapping the STK4/Hippo signaling network in prostate cancer cell. *PLoS One.* 2017;12(9):e0184590. [\[CrossRef\]](#)

**49** Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, et al. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. *Cell Death Dis.* 2020;11(5):387. [\[CrossRef\]](#)

**50** de Amorim ÍSS, de Sousa Rodrigues MM, Mencalha AL. The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. *J Cancer Res Clin Oncol.* 2021;147(5):1287-97. [\[CrossRef\]](#)

**51** Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, et al. The Hippo pathway kinases LATS1/2 suppress cancer immunity. *Cell.* 2016;167(6):1525-39.e17. [\[CrossRef\]](#)

**52** Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF- $\beta$  signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. *Proc Natl Acad Sci U S A.* 2016;113(1):E71-80. [\[CrossRef\]](#)

**53** Abylkassov R, Xie Y. Role of Yes-associated protein in cancer: An update. *Oncol Lett.* 2016;12(4):2277-82. [\[CrossRef\]](#)

**54** Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, et al. Yes-associated protein (YAP) functions as a tumor suppressor in breast. *Cell Death Differ.* 2008;15(11):1752-9. [\[CrossRef\]](#)

**55** Kim HS, Nam JS. The multifaceted role of YAP in the tumor microenvironment and its therapeutic implications in cancer. *Exp Mol Med.* 2025;57(10):2201-13. [\[CrossRef\]](#)

**56** Chen F, Su J, Liu Y, Zhang Z, Li S, Yuan Y, et al. Targeting YAP/TAZ-TEAD and their protein-protein interaction for precision cancer therapy. *Eur J Med Chem.* 2026;302(Pt 2):118330. [\[CrossRef\]](#)

**57** Pobbatı AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. *Trends Biochem Sci.* 2023;48(5):450-62. [\[CrossRef\]](#)

**58** Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. *Nat Rev Cancer.* 2013;13(4):246-57. [\[CrossRef\]](#)

**59** Liu AM, Wong KF, Jiang X, Qiao Y, Luk JM. Regulators of mammalian Hippo pathway in cancer. *Biochim Biophys Acta.* 2012;1826(2):357-64. [\[CrossRef\]](#)

**60** Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. *Mol Cell Biol.* 2006;26(1):77-87. [\[CrossRef\]](#)

**61** Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. *Cell.* 2006;124(6):1169-81. [\[CrossRef\]](#)

**62** McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. *EMBO J.* 2004;23(18):3677-88. [\[CrossRef\]](#)

**63** Kjærner-Semb E, Aylon F, Furmanek T, Wennevik GE, Dahle M, Schulz RW, et al. The Hippo pathway co-factor VGLL3 regulates Sertoli cell function and testis maturation across vertebrates. *Sci Rep.* 2018;8(1):1912. [\[CrossRef\]](#)

**64** Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. *Nat Cell Biol.* 2011;13(8):877-83. [\[CrossRef\]](#)

**65** Pan D. The hippo signaling pathway in development and cancer. *Dev Cell.* 2010;19(4):491-505. [\[CrossRef\]](#)

**66** Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. *Genes Dev.* 2010;24(9):862-74. [\[CrossRef\]](#)

**67** Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. *Cell.* 2011;147(4):759-72. [\[CrossRef\]](#)

**68** Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. *Cancer Cell.* 2016;29(6):783-803. [\[CrossRef\]](#)

**69** Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. *EMBO Rep.* 2014;15(6):642-56. [\[CrossRef\]](#)

**70** Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. *Proc Natl Acad Sci U S A.* 2012;109(37):E2441-50. [\[CrossRef\]](#)

**71** Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. *Genes Dev.* 2016;30(1):1-17. [\[CrossRef\]](#)

**72** Boggiano JC, Vanderzalm PJ, Fehon RG. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. *Dev Cell.* 2011;21(5):888-95. [\[CrossRef\]](#)

**73** Poon CL, Lin JI, Zhang X, Harvey KF. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. *Dev Cell.* 2011;21(5):896-906. [\[CrossRef\]](#)

**74** Hergovich A, Schmitz D, Hemmings BA. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. *Biochem Biophys Res Commun.* 2006;345(1):50-8. [\[CrossRef\]](#)

**75** Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. *Cell.* 2013;154(6):1342-55. [\[CrossRef\]](#)

**76** Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA, Silljé HH. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. *Oncogene.* 2005;24(12):2076-86. [\[CrossRef\]](#)

**77** Yap TA, Kwiatkowski DJ, Dagogo-Jack I, Offin M, Zauderer MG, Kratzke R, et al. YAP/TEAD inhibitor VT3989 in solid tumors: a phase 1/2 trial. *Nat Med.* 2025;31(12):4281-90. [\[CrossRef\]](#)

**78** Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, et al. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. *Nat Cancer.* 2024;5(7):1102-1120. Erratum in: *Nat Cancer.* 2024;5(7):1130. [\[CrossRef\]](#)

**79** Read RD. Repurposing the drug verteporfin as anti-neoplastic therapy for glioblastoma. *Neuro Oncol.* 2022;24(5):708-10. [\[CrossRef\]](#)

**80** Papavassiliou KA, Sofianidi AA, Papavassiliou AG. YAP/TAZ-TEAD signalling axis: A new therapeutic target in malignant pleural mesothelioma. *J Cell Mol Med.* 2024;28(8):e18330. [\[Cross-Ref\]](#)

**81** Cunningham R, Hansen CG. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. *Clin Sci (Lond).* 2022;136(3):197-222. [\[CrossRef\]](#)

**82** Cunningham R, Jia S, Purohit K, Fairley MN, Maniak MK, Lin Y, et al. Pipeline to evaluate YAP-TEAD inhibitors indicates TEAD inhibition represses *NF2*-mutant mesothelioma. *Life Sci Alliance.* 2025;8(10):e202503241. [\[CrossRef\]](#)